

Set No. 1

[8]

IV B.Tech I Semester Supplementary Examinations, March/April - 2016 POWER SYSTEM OPERATION AND CONTROL

(Electrical and Electronics Engineering)

Ti	Time: 3 hours Max. Marks:				
Answer any FIVE Questions All Questions carry equal marks *****					
1	a) b)	Discuss in detail about incremental heat rate curve and cost curve. A power System consists of two, 125 MW units whose input cost data are represented by the equations : $C1 = 0.04 P1^2 + 22 P1 + 800 Rupees/hour$ $C2 = 0.045 P2^2 + 15 P2 + 1000 Rupees/hour$ If the total received power PR = 200 MW. Determine the load sharing between units for most economic operation.	[7]		
2	a) b)	Assuming any relevant data and notation, derive the transmission loss formula. The incremental fuel cost for two plants are dC1 /d PG1 = 0.075 PG1 + 18 Rs./MWh dC2 / d PG2 = 0.08 PG2 + 16 Rs./MWh The loss coefficients are given as B11=0.0015 /MW, B12 = -0.0004/MW and B22 = 0.0032/MW for λ = 25 Rs./MWh. Find the real power generations, total load demand and the transmission power loss.	[7]		
3		Describe different methods for solving hydro thermal scheduling.	[15]		
4	a) b)	What is unit commitment problem? Discuss the constraints that are to be accounted in unit commitment problem. Using dynamic programming method, how do you find the most economical combination of the units to meet a particular load demand?	[7] [8]		
5	a) b)	Describe the mathematical model of Speed - Governing System. Develop the mathematical model of single control area and obtain its block	[7]		

1 of 2

diagram representation.

Code No: **R41024**

R10

Set No. 1

6	a)	Explain the state variable model of two area load frequency controller with integral	
		action.	[7]
	b)	Two power stations A & B are inter connected by tie line and an increase in load	
		of 300 MW on system B causes a power transfer of 150 MW from A to B. When	
		the tie line is open the frequencies of system a is 50 c/s and of system B is 49.6	
		are the life is open the requesteres of system u is so c/s and of system D is -15 .	
		c/s. Determine the values of $K_A \ll K_B$ which are the power frequency constants of	101
		each generator.	[8]
7		Discuss the importance of combined load frequency control and economic dispatch	
		control with a neat block diagram.	[15]
8	a)	Write advantages and disadvantages of different types of compensating equipment	
	<i>a)</i>	while advantages and disadvantages of different types of compensating equipment	
		for transmission systems.	[7]
	b)	Briefly describe about FACTS devices.	[8]

2 of 2

Code No: **R41024**